

CURRICULUM PLAN MATHS
BRAMHALL HIGH SCHOOL

Curriculum Intent

The curriculum is designed to ensure that all students regardless of ability leave with some form of mathematics qualification and that all students are numerate and have developed their analytical and problem solving skills. This should facilitate students to go on to suitable post 16 courses.
For most pupils, years 7 and 8 are used to cover the KS3 curriculum although the most able will also study some topics from KS4. The KS4 delivery in year 9 and 10 covers the full syllabus at an appropriate level by the end of Year 10 . This allows for a full year of revision and mastery of the curriculum. It also enables flexibility between tier of entry and group moves where required.
All students are entered for GCSE mathematics and are given every opportunity of support to achieve the best outcome for them. Where concerns exist, the Entry Level Certificate in Mathematics is delivered. To stretch and challenge the highest ability students they are entered for the Further Mathematics GCSE qualification. This provides a bridge between the GCSE and A-level courses and also significantly reinforces the grade 7+ questions on the standard mathematics GCSE.
The delivery of the mathematics curriculum provides the lifelong skills of numeracy and a love of mathematics. This is evidenced by the extracurricular opportunities such as Intermediate and Junior maths challenge. We also have other numeracy opportunities running throughout school such as codebreakers and 'numeracy ninjas'.

YEAR 7

Term	Programme of Learning	Links to the National Curriculum / Specification / Additional	Assessments	What extra learning opportunities are planned?	Disciplinary Literacy
Term la	SUPPORT Types of number; Place Value; Negative numbers in context Simplify, order and find equivalent fractions; Simple FDP equivalence; Order decimals to 3 d.p. CORE Ordering directed numbers, Ordering fractions, decimals and percentages Develop fraction skills - simplifying, equivalence, mixed to improper, FDP conversions ; Expand brackets; Substitution; Function machines	4, N6, N2, N3, N8, N1O A23, A25, A1, A2, A4, A7	In-class, Baseline Assessment	Identify if a fraction is recurring or terminating Division of improper and mixed numbers; Decimal multipliers; Find change as a percentage	Equivalent, denominator, numerator, improper, percentage, cent, simplifying, expressions, equation, substitution.

Term lb	SUPPORT Plotting coordinates in all four quadrants; Understand the term "congruence"; Reflection (mirror lines parallel to axes) and translation (worded) Types of number; Place Value; Negative numbers in context Add, Subtract, Multiply, BIDMAS, Problem solving Mixed to improper and back; Add/subtract fraction; Multiply/divide fractions by whole number; Easy \% of amount. Rounding to nearest.... And to 2 dp ; Estimating answers; Working backwards to check an answer CORE Solving equations by working backwards; One and two step, brackets and two unknowns; Cope with negative and fractional answers Drawing linear graphs,	$\begin{aligned} & \text { A8, A10, A12, A17, A18 } \\ & \text { N1, N2, N3, } \end{aligned}$	In class, assessment towards the end of the Autumn term	PFD; Venn diagrams to find HCF and LCM; Rounding to SF; BIDMAS with powers and roots Intersection of two linear graphs is a solution	Quadrants, congruence, reflection, translation, parallel. Equations, algebra, linear, plotting, gradient, intercept, primes, factors, multiples, indices.

	understand gradient and intercept Primes; Factors; Multiples; HCF \& LCM; Power notation; Square, Cube and Triangular numbers Multiplying and dividing (and with decimals) ; +-x \div with negatives, BIDMAS				
Term 2a	SUPPORT Convert between units of time; Read information from tables and timetables, Recognise and continue a linear sequence CORE ,,$+- x$ with proper, improper and mixed numbers; Find percentages; increase and decrease by a percentage Ratio - writing, simplifying, equivalence; Ratio to Fraction; Equivalent ratio problems; Sharing in a ratio. Generate terms of a sequence from either a term-to-term or a position-to- term rule; Deduce expressions to calculate	N10, R4, R5, R8			Hours, seconds, minutes, years, decades. Interest, compound interest, ratio. Sequence, pattern.

	the nth term of linear sequences Building expressions; Simplifying by collecting and multiplying				
Term 2b	SUPPORT Use metric conversions of length, mass, capacity to solve problems. Use rough metric to Imperial conversions to solve problems CORE Convert fluently between metric units of length, mass, capacity and time Rounding to any number of d.p. and to 1 sig, fig. Estimate by rounding to 1 s.f. Draw and measure lines and angles accurately to nearest degree and mm; Construct triangles; Angle notation; Line and rotational symmetry	$\begin{aligned} & \text { R1, N13 } \\ & \text { G1, G7, G14 } \end{aligned}$	In class assessment.	Use a multiplier in a proportion problem; Speed/Distance/Time calculations Angles in irregular and regular polygons	Metric, Imperial, mass, capacity, volume, conversion, estimation, significant figures, triangles, construction, rotational symmetry.

Term 3a	SUPPORT Discrete and Continuous data; Calculate and interpret the mean as an average Classify 2D shapes in various ways; Properties of special triangles and quadrilaterals; Parts of a circle; Regular and irregular polygons Tessellation of 2D shapes; Name of 3D shapes; Recognise nets of 3D shapes; Draw 3D shape on isometric paper CORE Averages and range from discrete data, averages from data in a frequency table and grouped frequency table Faces, Edges and Vertices of 3D shapes; Properties of special quadrilaterals and triangles - to solve angle problems Area and perimeter of rectilinear shapes including the trapezium	S3, S4, S7 G14, G16 G3	Whole School Exams after Easter. 2×45 mins. Calculator and NonCalculator	Volume and Surface area of cuboids, Area and Circumference of circles; Composite circles	Volume, surface area, discrete, continuous, circumference, diameter, radius, parallel, perpendicular, equal, segment, sector, chord, tangent, arc, nets, frequency, faces, edges, vertices, area, perimeter, compound, isosceles, scalene, right angled, equilateral, rhombus, rectangle, kite, trapezium, square, parallelogram.

Term 3b	SUPPORT Plotting coordinates in all four quadrants; Understand the term "congruence" ; Reflection (mirror lines parallel to axes) and translation (worded) Draw and interpret the following; Line graphs, Bar Charts, and easy Pie Charts CORE Reflect (equation of lines parallel to axes and $y=x$) ; Rotation; Translation (using vectors) Drawing linear graphs, understand gradient and intercept Discrete and Continuous data; Draw and interpret comparative bar charts, pie charts, histograms(equal class widths); Scatter Graphs and Correlation	$\begin{aligned} & \text { A17, A18 } \\ & \text { S2, S4, S5, S6 } \end{aligned}$	In class assessment. Usually done midJune		Quadrants, congruence, reflection, parallel, translation, linear, graphs, Interpretation, rotation, gradient, Intercept, discrete, continuos, histograms, frequency density, correlation.

YEAR 8					
Term	Programme of Learning	Links to the National Curriculum / Specification / Additional	Assessments	What extra learning opportunities are planned?	Disciplinary Literacy
Term la	SUPPORT Convert fluently between metric units of length, mass, capacity and time Multiplying and dividing (and with decimals) ; +-x \div with negatives, BIDMAS Primes; Factors; Multiples; HCF \& LCM; Power notation; Square, Cube and Triangular numbers Ordering directed numbers, Ordering fractions, decimals and percentages. Ratio writing, simplifying, equivalence; Ratio to Fraction; Equivalent ratio problems; Sharing in a ratio Rounding to any number of d.p. and to 1 sig, fig. Estimate by rounding to 1 s.f. CORE	```R1, R6, R7, R11,R12 N7, N9, N15 R2 S2, S6```		x, \div in Standard Form and use negative indices in these calculations Writing error intervals. Solving bounds problems	Conversion, mass, capacity, volume, prime, factors, multiples, indices, directed number, ratio, simplifying, expressions, equations, Ratio, equivalent, denominator, numerator. Similarity, congruence, similar, pressure, force, area, volume, density, mass, Venn diagrams, Indices, roots, significant, standard form, bounds, error Intervals.

	Use a multiplier in a proportion problem; Speed/Distance/Time; Density/Mass/Volume;			
Pressure/Force/Area;				
Undestand Congruence				
and Similarity; Find				
missing values in similar				
shapes				
P F D; Venn diagrams to				
find HCF and LCM;				
BIDMAS with powers and				
roots; Rounding to Sig. fig;				
Reading and writing				
numbers in and out of				
Standard Form. +,-				
numbers in Standard				
Form (with and without a				
calculator); Calculating				
with powers and roots;				
Identify min and max				
values of a rounded				
number.				

Term lb	SUPPORT Develop fraction skills simplifying, equivalence, mixed to improper, FDP conversions Drawing linear graphs, understand gradient and intercept ,,$+- x$ with proper, improper and mixed numbers; Find percentages; increase and decrease by a percentage CORE Division of improper and mixed numbers; Decimal multipliers; Find change as a percentage; Simple Interest Plot quadratic graphs; Distance/Time Graphs; Equations of parallel lines; Rearrange $y=m x+c$ to find gradient and intercept; Find the equation of a line from the gradient and a point. Draw compound bar charts, scatter graphs and lines of best fit.	$\begin{aligned} & \text { N10, N11 } \\ & \text { R9, A9, A10, A12, A15 } \end{aligned}$	In class assessment	Understand direct and inverse proportion and recognise their graphs Plot cubic and reciprocal graphs	Fraction, decimal, percentage, proportion, topheavy, direct, inverse, correlation, interest, parallel, gradient, intercept, steepness, rate of change, equidistance. Compound interest, simple interest, line of best fit.

Term 2a	SUPPORT Draw and interpret comparative bar charts, pie charts, histograms(equal class widths); Scatter Graphs and Correlation CORE Single event probability; Listing Outcomes, Venn diagrams; Two way tables; Frequency Trees; Probability Trees; Relative Frequency	$\begin{aligned} & \text { S4, S5 } \\ & \text { P1, P2, P3, P4, P5, P6, P7, P8 } \end{aligned}$			Comparative, bar chart, histogram, equal, width, area, correlation Probability, outcome, Venn diagram, relative frequency.
Term 2b	SUPPORT Building expressions; Simplifying by collecting and multiplying; Expand brackets; Substitution; Function machines Generate terms of a sequence from either a term-to-term or a position-to-term rule; Deduce expressions to calculate the nth term of linear sequences Averages and range from discrete data, averages from data in a frequency table and grouped	$\begin{aligned} & \text { A3, A4, A5 } \\ & \text { A19, A21, A22 } \\ & \text { A24 } \end{aligned}$	In class assessment	Solve by elimination multiplying one equation	Expression, simplify, collect, expand, substitute, generate, function, linear, sequence, mean, mode, median, range, grouped, discrete

	Generate a quadratic sequence. Identify a quadratic sequence and find the 1st and 2nd differences				
Term 3a	SUPPORT Use angle facts fluently to solve problems; angles in triangles and quadrilaterals; angles in parallel lines Draw and measure lines and angles accurately to nearest degree and mm; Construct triangles; Angle notation; Line and rotational symmetry; Reflect (equation of lines parallel to axes and $y=x$) ; Rotation; Translation (using vectors) CORE Draw, measure and calculate bearings;	G2, G15, G3, G5, G6 G7, G13		Solve by elimination multiplying one equation	Acute, obtuse, reflex, right, triangle, quadrilateral, parallel, accurate, construct, rotational symmetry, reflect, rotate, translate, transformation, vector, axes, rotation.

	Compass Constructions; LOCI Angles in irregular and regular polygons; Understand congruence in triangles i.e. SSS, SAS, RHS, ASA; Time series graphs; Lines of best fit - when and how to use Plans \& Elevations; Enlargement with positive (whole \& fractional) SF			Bearing, locus/loci, irregular, congruence, plan, elevation, enlargement, scale factor
Term 3b	SUPPORT Faces, Edges and Vertices of 3D shapes; Properties of special quadrilaterals and triangles - to solve angle problems Area and perimeter of rectilinear shapes including the trapezium. CORE Volume and Surface area of cuboids, Area and Circumference of circles; Composite circles; Volume and surface area of prisms including cylinders; Pythagoras;	$\begin{aligned} & \hline \text { N8 } \\ & \text { C6,G11,G16, } \\ & \mathrm{G} 17, \mathrm{G} 20 \end{aligned}$	Whole School Exams mid Jan $2 \times 45 \mathrm{mins}$. Calculator and NonCalculator	Face, edge, vertex, vertices, area, perimeter, rectilinear, trapezium/trapezoid Volume, surface area, circumference, composite, prism, cylinder, Pythagoras, Pi, radius, diameter.

YEAR 9

Term	Programme of Learning	Links to the National Curriculum / Specification / Additional	Assessments	What extra learning opportunities are planned?	Disciplinary Literacy
Term 1a	SUPPORT Understand and use the concepts and vocabulary of inequalities; Solve linear inequalities in one variable; Represent the solution set to an inequality on a number line Equations of parallel lines; Rearrange $y=m x+c$ to find gradient and intercept; Find the equation of a line from the gradient and a point. Expand two brackets; Solve simultaneous equations by drawing two linear graphs; Solve by elimination (no multiplying); CORE Solve linear inequalities and show the solution on a number line. Show regions on a graph that satisfies inequalities.	$\begin{aligned} & \text { A22, G25 } \\ & \text { A9 } \end{aligned}$		Use the form $y=m x+c$ to identify perpendicular lines; Recognise and use the equation of a circle with centre at the origin; Find the equation of a tangent to a circle at a given point Show the region on a graph that satisfies inequalities Quartiles for discrete data; Cumulative Frequency and Box Plots; Histograms	Perpendicular, inequalities, solve, set, equations, parallel, gradient, intercept, expand, solutions, roots, origin, expand expand.

	Use the form $y=m x+c$ to identify parallel lines; Find the equation of a tangent to a circle at a given point Expand 2 or more brackets				
Term 1b	SUPPORT Factorise into 1 or two brackets; Laws of Indices; Change Subject of a formula Volume and Surface area of cuboids, Area and Circumference of circles; Composite circles; Volume and surface area of prisms including cylinders; Pythagoras; Plans \& Elevations; Enlargement with positive (whole \& fractional) SF Recognise and generate a Fibonacci Sequence; Generate a quadratic sequence. Identify a quadratic sequence and find the 1st and 2nd differences	A4,A6,A24 G17,G18, R16 R12, R10, N10 A11,A18	In class assessment	Solve quadratic equations by factorising $-a \times 2+b x+c$; Solve related quadratic equations; Solve problems by generating a quadratic equation Find Nth term of Quadratic sequences e.g. $a x 2+b x+c$; Recurring decimals to fractions	Factorise, indices, formula, volume, area, surface area, cuboids, circumference, radius, diameter, composite, prisms, cylinders, Pythagoras, plans, elevations, enlargement, scale factor, sequence, generate, quadratic, difference.

	CORE Harder quadratic factorising including the Diff. Of 2 Squares; Simplify \& +, -, x, - algebraic fractions; Proof Solve quadratic equations by factorising e.g. x2 + bx +c including the diff of squares. Solve quadratic equations by drawing graphs Arcs and Sectors of circles; Volume and SA of cones, spheres, pyramids and composite solids Enlargement - fractional SF; Combined transformations; Invariance Classify and generate Sequences: Arithmetic, Fibonacci, Geometric and Quadratic			Simplify, prove, arc, sector, cones, spheres, pyramids, transformations, invariance, geometric sequences,
arithmetic.				

numbers in Standard Form (with and without a calculator); Calculating with powers and roots; Identify min and max values of a rounded number. Identify if a fraction is recurring or terminating; Division of improper and mixed numbers; Decimal multipliers; Find change as a percentage; Simple Interest CORE Estimate Squares, Cubes, Square roots and cube roots. x, \div in Standard Form and use negative indices; Standard form problems; Writing error intervals; Bounds problems, Evaluate negative Indices Read/Write recurring decimals; Compound Interest; Growth and decay problems				terminating, improper fractions, mixed numbers, multipliers, interest Error intervals, bounds, evaluate, compound interest, growth/decay,

Term 2b	SUPPORT Draw, measure and calculate bearings; Compass Constructions; LOCI Angles in irregular and regular polygons; Understand congruence in triangles i.e. SSS, SAS, RHS, ASA; CORE Right-angled trigonometry Vectors; Working with column vectors; Simple geometric vector problems	G7,G8,G20		Draw, measure, calculate, bearings, constructions, locus/loci, irregular, regular, polygons, similar, congruence, hypotenuse Trigonometry, vector
Term 3a	SUPPORT Use a multiplier in a proportion problem; Speed/Distance/Time; Density/Mass/Volume; Pressure/Force/Area; Understand Congruence and Similarity; Find missing values in similar shapes Plot quadratic graphs CORE		Solve direct and inverse proportion problems which include finding the multiplier and can include $\times 2, \times 3, \sqrt{ } \times$; Effect of enlargement of Area and Volume	Proportion, formulae, congruence, similarity, quadratic Direct proportion, inverse proportion, theorem

	Use direct and inverse proportion equations to solve problems; Recognise graphs of direct and inverse proportion Circle Theorems			
Term 3b	SUPPORT			
	Averages and range from discrete data, averages from data in a frequency table and grouped frequency table Single event probability; Listing Outcomes, Venn diagrams; Two way tables; Frequency Trees; Probability Trees (independent probability) Relative Frequency Time series graphs; Lines of best fit -when and how to use CORE	P6, P8, P9 S1	In class assessment	
Probability; Further tree diagrams for independent and conditional problems;		Mean, median, mode, range, frequency, probability, outcomes, venn diagrams, independent, relative frequency, frequency		

	AND/OR rule; Product rule; Use Venn diagrams to solve problems and find probabilities Understand the limits of sampling;			diagrams, sample space, event, product, limits, sampling,

YEAR 10					
Term	Programme of Learning	Links to the National Curriculum / Specification / Additional	Assessments	What extra learning opportunities are planned?	Disciplinary Literacy
Term la	SUPPORT Estimate Squares, Cubes, Square roots and cube roots. x, \div in Standard Form and use negative indices; Writing error intervals; Bounds problems Enlargement fractional SF; Right- angled trigonometry FOUNDATION Solve angle problems; Measure, draw and calculate bearings; Congruence \& Similarity; Angles in regular and irregular polygons HIGHER 3D Pythagoras; 3D Trigonometry ; Sine and Cosine rule; Area of a nonright angled triangle Fractional Indices; Bounds - including "safety" problems; surds	$\begin{aligned} & \mathrm{G} 20, \mathrm{G} 21, \mathrm{G} 22, \\ & \mathrm{G} 23 \\ & \mathrm{~N} 7, \mathrm{~N} 8, \mathrm{~N} 16 \end{aligned}$	In class, non calculator Just before half term	Recognise the ambiguous case when using sine rule Perform calculations using exact values of sin, cos and tan involving surds	Estimate, standard, form, square roots, cube roots, indices, error intervals, bounds, enlargement, trigonometry, sine, cosine and tangent Solve, measure, bearings, congruence, similarity, regular, irregular, polygons Pythagoras, sine, cosine, surds

	elimination or substitution where both need multiplying				
Term 2a	SUPPORT Use direct and inverse proportion equations to solve problems; Recognise graphs of direct and inverse proportion Arcs and Sectors of circles; Volume and SA of cones, spheres, pyramids FOUNDATION Nth term of linear sequences + properties of geometric etc Sketch and interpret non-linear graphs ie quadratic, cubic, reciprocal Direct and Inverse proportion: simple problems and graphs HIGHER	A12,A15,A25 R13,R14,R15	In class, calculator Mid-January	Interpret the gradient of a curve at a point; Identify roots, intercepts and turning, points of quadratic functions to sketch the graph	Direct/inverse proportion, arcs, sectors, volume, surface area, pyramids

	Sketch and interpret nonlinear graphs. Estimate the gradient of a curve using the tangent to the curve; Find the area under a curve and so calculate the distance travelled in speed time graph. Solve direct and inverse proportion problems which include finding the multiplier and can include $x 2, x 3, \sqrt{ } \times$; Nth term of quadratic sequences + properties of geometric				Estimate, gradient, tangent, area, properties
Term 2b	SUPPORT Solve linear inequalities and show the solution on a number line. Understand the limits of sampling; FOUNDATION Area and Perimeter of 2D shapes including circles. Compound shapes. HIGHER Plot and interpret linear inequalities graphically; Solve simultaneous equations where one is	A19,A21,A22	Just before Easter holiday 3×90 mins GCSE past paper	Sketch quadratic graphs and use to solve quadratic inequalities	Solve, inequalities, linear, solution, limits Area, perimeter, compound Non-linear, graphically,

	non-linear ie quadratic or a circle.				
Term 3a	SUPPORT Use the form $y=m x+c$ to identify parallel lines; Vectors; Working with column vectors; Simple geometric vector problems FOUNDATION Histograms (equal width); averages; scatter graphs Standard Form problems; PFD, HCF, LCM HIGHER Exponential and Trig graphs. Transforming graphs including sin, cos	A		Apply the concepts of average and instantaneous rates of change	Equation, gradient, intercept, parallel, vectors Histograms, averages, mean, mode, median, scatter graphs, standard form, prime factor, decomposition Exponential, trigonometric, transform, quartiles, discrete,

| | Target areas of weakness
 identified in whole school
 exams | | Perpendicular,
 reciprocal,
 completing the
 square, turning
 points, vertex,
 origin, tangent,
 proof. |
| :--- | :--- | :--- | :--- | :--- |
| HIGHER
 Use the form $y=m x+c$ to
 identify perpendicular
 lines; Solve quadratic
 equations by factorising -
 ax2 + bx +c ; Solve related
 quadratic equations; Solve
 problems by generating a
 quadratic equation;
 Completing the Square to
 deduce turning points;
 Recognise and use the
 equation of a circle with
 centre at the origin; Find
 the equation of a tangent
 to a circle at a given point
 Using vectors for
 geometrical proof
 Target areas of weakness
 identified in whole school
 exams | | | |

YEAR 11

Term	Programme of Learning	Links to the National Curriculum / Specification / Additional	Assessments	What extra learning opportunities are planned?	Disciplinary Literacy
Term la	Pupils will begin Year 11 by focusing on commonly examined topics and the basic skills that are required at an appropriate level for their ability. There will be an emphasis on applying their knowledge in unfamiliar ways and on exam technique			Some very high ability students will be offered the opportunity to study for the GCSE in Further Mathematics. Some students may be entered for QA Entry Level Certificate	
Term 1b	Past paper practice in advance of 1st set of mocks Mock papers are analysed and for each class this generates a bespoke set of topics that need to be addressed in more detail		Mid-November $3 x$ 90 mins GCSE past paper	Some very high ability students will be offered the opportunity to study for the GCSE in Further Mathematics. Some students may be entered for QA Entry Level Certificate	

| Term 2a | Pupils will continue to "fill
 the gaps" in their
 knowledge. This may
 include teaching some
 topics that have not
 previously been covered -
 depending on target
 grade and setting
 Past paper practice in
 advance of 2nd set of
 mocks | Some very high ability
 students will be offered
 the opportunity to study
 for the GCSE in Further
 Mathematics.
 Some students may be
 entered for QA Entry
 Level Certificate | |
| :--- | :--- | :--- | :--- | :--- |
| Term 2b | Mock papers are analysed
 again and for each class
 this generates another
 bespoke set of topics that
 need to be addressed in
 more detail | Just after half term 3
 x 90 mins
 GCSE past paper | Some very high ability
 students will be offered
 the opportunity to study
 for the GCSE in Further
 Mathematics.
 Some students may be
 entered for QA Entry
 Level Certificate |

| Term 3a | Pupils will continue to "fill
 the gaps" in their
 knowledge | Some very high ability
 students will be offered
 the opportunity to study
 for the GCSE in Further
 Mathematics.
 Some students may be
 entered for QA Entry
 Level Certificate |
| :--- | :--- | :--- | :--- | :--- |

